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The purpose of this paper is to present a simple and direct way of determining

the eigenvalues and eigentensors, as well as their orientations, for all crystals of

the orthorhombic, tetragonal, hexagonal and cubic symmetries, a procedure

based on the spectral decomposition of the compliance and stiffness fourth-rank

tensors. First, both the eigenvalues and the idempotent fourth-rank tensors are

derived for the orthorhombic and tetragonal-7 symmetries. The latter

decompose, respectively, the second-rank symmetric tensor spaces of ortho-

rhombic and tetragonal-7 media into orthogonal subspaces, consisting of the

stress and strain eigentensors, and split the elastic potential into distinct non-

interacting strain-energy parts. Accordingly, the spectrum of the compliance

tensor of the tetragonal-6 symmetry is evaluated, by reduction of the

eigenvalues and eigentensors of either the orthorhombic or tetragonal-7

symmetry. These results are, then, applied in turn to each of the hexagonal and

cubic crystal systems. In each case, the eigenvalues, the idempotent tensors and

the stress and strain eigentensors are easily derived as particular cases of the

results obtained for the tetragonal-6 symmetry. Furthermore, it is noted that the

positivity of the eigenvalues for each symmetry is equivalent to the positive

de®niteness of the elastic potential and, thus, necessary and suf®cient conditions

are acquired, in terms of the compliance-tensor components, characteristic of

each symmetry.

1. Introduction

Rychlewski (1984a,b) ®rst employed the spectral decomposi-

tion theorem on the symmetric fourth-rank tensors of

compliance S and stiffness C of a generic elastic solid, acting as

linear operators on the symmetric second-rank-tensor space L
of stresses r and strains "", for the decomposition of this space

into orthogonal subspaces. Subsequently, the spectral formu-

lation, which was initiated for the characterization of the

theoretical algebraic structure of the linear elastic medium,

was ®rmly incorporated by Theocaris & Philippidis (1989,

1990, 1991), and the extremely important and practical case of

transversely isotropic media was treated in detail, emphasizing

the role of eigenangles in the de®nition of the extent of

anisotropy and toughness of such media. Recently, the spectral

decomposition of the compliance tensor S was speci®cally

de®ned for monoclinic media (Theocaris & Sokolis, 1999) as

well as for orthotropic plates (Theocaris & Sokolis, 1998a,b).

Apart from the spectral decomposition of the compliance

tensor S, many other types of decomposition have been

proposed (Eshelby, 1961; Hill, 1965a,b; Srinivasan & Nigam,

1969; Willis, 1980; Walpole, 1981, 1984; Podio-Guidugli &

Virga, 1987). Yet these types of decomposition, when

compared with the spectral one, do not have its advantages;

namely, the unparalleled simplicity that it introduces to the

mathematical analysis of the theory of elasticity, a fact that is

re¯ected in the elementary linear form that the generalized

Hooke's law assumes.

In this paper, a simple and direct way is presented for the

determination of the eigenvalues, the eigentensors and their

orientations for anisotropic crystals. This procedure, based on

the spectral decomposition of the compliance, S, and stiffness,

C, fourth-rank tensors, is applied in turn to orthorhombic,

tetragonal-7, tetragonal-6, hexagonal and cubic crystals

(Fig. 1). By crystals, we here mean crystals or other non-

crystalline anisotropic materials. Initially, the form of the

compliance tensor S is recalled and its characteristic equation

is solved. Thus, the corresponding explicit expressions for the

eigenvalues are written down, and the idempotent fourth-rank

tensors for the orthorhombic and tetragonal-7 symmetries are

constructed, respectively, in xx2 and 3. These tensors decom-

pose orthogonally the second-rank symmetric stress and strain

tensors into their eigentensors, thus analyzing the total elastic

strain-energy density of orthorhombic and tetragonal-7 crys-² Deceased.
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tals into independent elements. Next, the spectrum of the

tetragonal-6 symmetry is evaluated by reduction of the spec-

trum of either the orthorhombic or the tetragonal-7 symmetry.

Then, by regarding the crystalline media of the hexagonal and

cubic systems as special tetragonal-6 crystals, the eigenvalues,

the idempotent tensors and the stress and strain eigentensors,

acquired for tetragonal-6 media, are determined successively

in the case of hexagonal, in x4, and cubic symmetries, in x5.

Moreover, it is shown in x6 that the positivity of the eigen-

values valid for each symmetry is equivalent to the positive

de®niteness of the elastic potential. Hence, necessary and

suf®cient conditions are deduced, in terms of the compliance-

tensor components, representative of each distinct symmetry.

Finally, it is worthwhile mentioning that the analysis

undertaken in this paper concerns the elastic compliance, S,

and stiffness, C, fourth-rank tensors. Nonetheless, all the

results presented herein remain valid for any fourth-rank

tensor H, satisfying the full symmetry conditions

Hijkl � Hjikl � Hijlk � Hklij.

2. Orthorhombic symmetry

In this section, we study the spectral decomposition of the

compliance fourth-rank tensor S of an orthorhombic linear

elastic crystal. The internal structure of such a medium is

characterized by three axes of symmetry of the second order,

L2, and a plane of elastic symmetry, P. In this case, the

Cartesian system, according to which the tensor components

are referred, is oriented along the directions of the symmetry

axes of the crystalline medium, with its 3 axis coinciding with

one axis of elastic symmetry L2 and its 1 axis lying either in the

direction of another symmetry axis L2 or normal to plane P.

Hence, the compliance-tensor components Sijkl of the ortho-

rhombic system (Nye, 1957; Hearmon, 1961; Lekhnitskii,

1963) are expressed, in terms of the components sij of the

6 � 6 matrix s of the Voigt notation, as follows:

S1111 � s11; S2222 � s22; S3333 � s33; �1a�
S1122 � S2211 � s12; S2233 � S3322 � s23; S1133 � S3311 � s13;

�1b�
S2323 � S2332 � S3223 � S3232 � 1

4 s44; �1c�
S1313 � S1331 � S3113 � S3131 � 1

4 s55; �1d�
S1212 � S1221 � S2112 � S2121 � 1

4 s66: �1e�
The eigenvalues �m of the associated square matrix of rank six

to tensor S de®ned above were determined from the charac-

teristic equation

det

s11 ÿ � s12 s13 0 0 0

s12 s22 ÿ � s23 0 0 0

s13 s23 s33 ÿ � 0 0 0

0 0 0 1
2 s44 ÿ � 0 0

0 0 0 0 1
2 s55 ÿ � 0

0 0 0 0 0 1
2 s66 ÿ �

26666664

37777775 � 0;

�2�
which is equivalent to the following equation:

��3 � A�2 � B�� C���ÿ 1
2 s44���ÿ 1

2 s55���ÿ 1
2 s66� � 0; �3�

where the coef®cients A, B and C are as follows:

A � ÿ�s11 � s22 � s33�; �4a�
B � �s11s22 � s11s33 � s22s33� ÿ �s2

12 � s2
13 � s2

23�; �4b�
C � s11s2

23 � s22s2
13 � s33s2

12 ÿ �s11s22s33 � 2s12s13s23�: �4c�
The polynomial inside the ®rst parentheses of relation (3) is a

cubic and, therefore, has to be transformed to its reduced

form, in order for the set of eigenvalues �1, �2 and �3 to be

estimated. Substituting for � � yÿ A=3 in the cubic equation,

this is recast as

y3 � Py�Q � 0; �5�
in terms of parameters P � Bÿ A2=3 and

Q � 2A2=27ÿ AB=3� C. To solve (5), we ®rst put

y � u cos � and compare the resulting equation,

u3 cos3 � � Pu cos � �Q � 0; �6�
with the trigonometric identity

4 cos3 � ÿ 3 cos � � cos 3�: �7�
If these two equations are to be the same, we must have

1
4 u3 � ku � ÿQ=cos 3�; �8�

where k � ÿP=3. Hence, it is derived that

u � 0;�2k1=2 and cos 3� � ÿQ=ku: �9�
Clearly, the case of u � 0 is to be excluded, since this requires

cos 3� to exceed unity. With u � 2k1=2, we ®nd

cos 3� � ÿQ=2k3=2 �10a�
and, therefore,

� � 2
3�n� 1

3 cosÿ1�ÿQ=2k3=2�; n � 0; 1; 2; . . . : �10b�
Figure 1
The relationship between the orthorhombic, tetragonal-7, tetragonal-6,
hexagonal, cubic and isotropic symmetries.



Consequently, the eigenvalues �m, m � 1; . . . ; 6, of the

compliance tensor S were evaluated to be of multiplicity 1,

de®ned by

�1 � 2k1=2 cos�13 cosÿ1�ÿQ=2k3=2�� ÿ A=3; �11a�
�2 � 2k1=2 cosf13 �cosÿ1�ÿQ=2k3=2� � 2��g ÿ A=3; �11b�
�3 � 2k1=2 cosf13 �cosÿ1�ÿQ=2k3=2� � 4��g ÿ A=3; �11c�
�4 � 1

2 s44; �5 � 1
2 s55; �6 � 1

2 s66; �11d�
and it is easily veri®ed that u � ÿ2k1=2 just reproduces the

initial roots �1, �2 and �3.

The corresponding six idempotent fourth-rank tensors Em,

m � 1; . . . ; 6, were also found as follows:

E1 � E1
ijkl � h
 h � hijhkl; E2 � E2

ijkl � j
 j � jijjkl; �12a�
E3 � E3

ijkl � r
 r � rijrkl; a; b; c; h; j; r 2 L; �12b�
E4 � E4

ijkl � 1
2 �aikbjl � ailbjk � ajkbil � ajlbik�; �12c�

E5 � E5
ijkl � 1

2 �cikajl � cilajk � cjkail � cjlaik�; �12d�
E6 � E6

ijkl � 1
2 �bikcjl � bilcjk � bjkcil � bjlcik�; �12e�

in which the second-rank symmetric tensors h, j and r,

appearing in the above-cited expressions for the idempotent

tensors E1, E2 and E3, are given by

h � sin � sin 'cÿ sin � cos 'b� cos �a; �13a�
j � ÿ sin!f � cos!g; r � cos!f � sin!g; �13b�

where tensors f and g are second-rank symmetric tensors,

de®ned as follows:

f � cos 'c� sin 'b; �14a�
g � ÿ cos � sin 'c� cos � cos 'b� sin �a: �14b�

Further, tensors a, b and c, ®guring in relations (12c), (12d),

(12e) for the idempotent tensors E4, E5 and E6, are second-

rank symmetric tensors, de®ned by

a � k
 k; b � l
 l; c � m
m; �15�
in which k, l and m constitute the unit vectors of the adopted

Cartesian space R3, referring to the 3, 2 and 1 directions.

Besides, the three angles �, ' and ! of relations (13) and (14),

referred to as the eigenangles, are expressed as

tan � � �B
2
1 � �s11 ÿ �1�2C2

1=s2
11�1=2

��s11 ÿ �1�A1=s11�
; �16a�

tan ' � �s12s23 � s13�s22 ÿ �1��
�s12s13 � s23�s11 ÿ �1��

; �16b�

tan! � B2
1 � �C2

1=s2
11��s11 ÿ �1�2

B2
1 � ��A2

1 � C2
1�=s2

11��s11 ÿ �1�2
�
ÿ �A2

2=s2
11��s11 ÿ �2�2

fB2
2 � ��A2

2 � C2
2�=s2

11��s11 ÿ �2�2g
�1=2

� �A2=s11��s11 ÿ �2�
fB2

2 � ��A2
2 � C2

2�=s2
11��s11 ÿ �2�2g1=2

� �ÿ1

; �16c�

with parameters Ai , Bi and Ci, i � 1; 2, which appear in the

de®nitions above, given by

Ai � �s22 ÿ �i��s11 ÿ �i� ÿ s2
12; �17a�

Bi � �s11 ÿ �i��s12s23 � s13�s22 ÿ �i��; �17b�
Ci � s12s13 � s23�s11 ÿ �i� i � 1; 2: �17c�

In conclusion, the six eigenvalues �m, m � 1; . . . ; 6, toge-

ther with the eigenangles �, ' and !, make up the nine

quantities, essential for the coordinate-invariant description of

the elastic characteristics of orthorhombic crystals. By means

of the eigenvalues �m, m � 1; . . . ; 6, de®ned by relations (11),

and the associated idempotent tensors Em, m � 1; . . . ; 6,

given by relations (12), the compliance tensor S is analyzed as

S � �1E1 � . . .� �6E6 �18�
and, thus, the space L of second-rank symmetric tensors is

expanded orthogonally into six subspaces Lm, m � 1; . . . ; 6:

L � L1 � . . .� L6; �19�
where L1, L2 and L3 are one-dimensional subspaces,

comprising combinations of deviatoric and hydrostatic

tensors, whereas L4, L5 and L6 are one-dimensional subspaces

of deviatoric tensors.

Next, the stress eigentensors rm of the compliance fourth-

rank tensor S of the orthorhombic medium are derived, by

orthogonally projecting the second-rank symmetric stress

tensor r on subspaces Lm, formed by the idempotent fourth-

rank tensors Em, as follows:

rm � Em � r; m � 1; . . . ; 6: �20�
Denoting by r the contracted stress tensor, in the form of a 6D

vector:

r � ��1; �2; �3; �4; �5; �6�T; �21�
and carrying out the calculations, indicated by relations (20),

the stress eigentensors rm were found in contracted notation:

r1 � �sin � sin '��1� ÿ sin � cos '��2� � cos ���3��
� �sin � sin ';ÿ sin � cos '; cos �; 0; 0; 0�T; �22a�

r2 � ��ÿ cos � sin ' cos!ÿ cos ' sin!���1�
� �cos � cos ' cos!ÿ sin ' sin!���2� � sin � cos!��3��
� �ÿ cos � sin ' cos!ÿ cos ' sin!;

cos � cos ' cos!ÿ sin ' sin!; sin � cos!; 0; 0; 0�T;
�22b�

r3 � ��ÿ cos � sin ' sin!� cos ' cos!���1�
� �cos � cos ' sin!� sin ' cos!���2� � sin � sin!��3��
� �ÿ cos � sin ' sin!� cos ' cos!;

cos � cos ' sin!� sin ' cos!; sin � sin!; 0; 0; 0�T;
�22c�

r4 � �0; 0; 0; �4; 0; 0�T; �22d�
r5 � �0; 0; 0; 0; �5; 0�T; �22e�
r6 � �0; 0; 0; 0; 0; �6�T : �22f �
As may be noticed in relations (22), the stress eigentensors rm

split the stress tensor r into six components, with tensors r1, r2

and r3 representing superposition of stressing along the 1, 2

and 3 directions of the adopted Cartesian coordinate system
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and tensors r4, r5 and r6 constituting simple shear stress

states. Further, as can be observed, the contracted stress

eigentensors r1, r2 and r3 are dependent on the values of the

eigenangles �, ' and !, given by relations (16), and the elastic

compliances of the crystal. Conversely, the remaining three

characteristic stress tensors r4, r5 and r6 are independent of

the eigenangles �, ' and ! and the material properties, hence

remaining the same for the whole class of orthorhombic

media.

Next, according to the spectral decomposition of the

compliance, S, and stress, r, tensors, the elastic potential T is

divided,

2T�r� � T�r1� � . . .� T�r6�; �23�

into distinct energy constituents T�rm�, each related solely to a

single stress eigentensor rm and de®ned by the following

quantity:

T�rm� � �m�rm � rm� � �m tr�rm
2�; m � 1; . . . ; 6: �24�

In view of relations (24), the energy components T�r1�, T�r2�
and T�r3� are complex functions of the three eigenvalues �1,

�2 and �3, as well as of the eigenangles �, ' and !. Hence, these

are dependent on the values of the elastic compliances of the

orthorhombic crystal and are associated with mixtures of

dilatational and distortional forms of energy. On the other

hand, the remaining elastic energy components, namely T�r4�,
T�r5� and T�r6�, are independent of the values of the set of

eigenangles �, ' and ! and refer exclusively to shape distortion

of the medium.

Nevertheless, in evaluating the above-mentioned elastic

potential components T�rm�, care must be taken to employ the

full tensor notation for the stress eigentensors rm and not their

contracted notation expressed in equations (22) in terms of

six-dimensional vectors, owing to the fact that the stress tensor

r has nine symmetric components and not six. Alternatively,

the representation of the stress eigentensors rm by vectors in a

nine-dimensional space would be convenient, since their scalar

product is then directly equal to the convolution of the stress

eigentensors rm, de®ned in equation (24). Of course, it is also

possible to consider the six-dimensional space and take as

components of the stress vector the six distinct components of

the stress tensor multiplied by certain numbers, the latter

being chosen so that the scalar product of vectors will corre-

spond to the convolution of tensors.

Lastly, it is of interest to note that, by considering the

projections of the contracted stress eigentensors rm,

m � 1; . . . ; 6, on the principal stress (�1, �2, �3) frame, the r4,

r5 and r6 eigentensors readily vanish. On the contrary, the

characteristic stress states r1, r2 and r3 are represented by

three mutually orthogonal vectors, oriented along the direc-

tions with the following associated unit vectors e1, e2 and e3:

e1 � �sin � sin ';ÿ sin � cos'; cos ��T; �25a�
e2 � �ÿ cos � sin ' cos!ÿ cos ' sin!;

cos � cos ' cos!ÿ sin ' sin!; sin � cos!�T; �25b�
e3 � �ÿ cos � sin ' sin!� cos ' cos!;

cos � cos ' sin!� sin ' cos!; sin � sin!�T : �25c�
Fig. 2 exhibits the geometric arrangement of these three unit

vectors, e1, e2 and e3, with respect to the principal stress

(�1, �2, �3) frame. Then, as noted in Fig. 2 and veri®ed by

relations (25), vectors e2 and e3 lie on plane (�0, �), with

vector e2 subtending an angle equal to ! with the �0 axis and

vector e3 subtending an angle equal to ��=2ÿ !� with the

same axis. In addition, the (�0, �) plane is inclined to plane

(�3, �) by an angle ��=2ÿ �� and the � axis subtends an angle

' with the �1 axis. Finally, the e1 unit vector is perpendicular to

the (�0, �) plane, thus forming with the other two unit vectors,

e2 and e3, a tri-orthogonal frame of vectors. This concludes the

spectral decomposition of the compliance tensor S for the

orthorhombic symmetry. For further discussion of some

aspects and potential applications of the spectral analysis to

orthotropic engineering materials, such as the ®ber-reinforced

composites, the reader may refer to a companion paper

(Theocaris & Sokolis, 2000).

3. Tetragonal symmetry

3.1. Tetragonal-7 crystals

Consider the spectral decomposition of the compliance

tensor S of a tetragonal-7 crystalline linear elastic medium.

Such an anisotropic body is characterized by an axis of

complex symmetry of the fourth order, L4, or, alternatively, by

an axis of symmetry of the second order, which is also an axis

of complex symmetry of the fourth order, L2
4. We suppose that

the Cartesian coordinate system, to which the stress, r, and

strain, "", tensors refer, is aligned with the principal material

directions, and its 3 axis is oriented along the axis of symmetry

of the tetragonal-7 medium. Then, using the components sij of

the 6 � 6 matrix s of the Voigt notation (Nye, 1957; Hearmon,

1961; Lekhnitskii, 1963), the compliance-tensor components

Sijkl, which are associated with the adopted reference system,

are expressed as

S1111 � S2222 � s11; S3333 � s33; �26a�
S1122 � S2211 � s12; S2233 � S3322 � S1133 � S3311 � s13; �26b�

S2323 � S2332 � S3223 � S3232 � S1313 � S1331 � S3113 � S3131

� 1
4 s44; �26c�

S1212 � S1221 � S2112 � S2121 � 1
4 s66; �26d�

S1121 � S1112 � S1211 � S2111 � 1
2 s16; �26e�

S2212 � S2221 � S1222 � S2122 � ÿ 1
2 s16; �26f �

whereas the remaining components Sijkl are equal to zero. The

tensor S of such a medium, when spectrally decomposed, was

shown to assume the following representation:

S � �1E1 � . . .� �5E5; �27�



where the characteristic values �m, m � 1; . . . ; 5, of the square

matrix of rank six, associated with tensor S, were determined

by solving its eigenvalue equation:

det

s11 ÿ � s12 s13 0 0 s16=21=2

s12 s11 ÿ � s13 0 0 ÿs16=21=2

s13 s13 s33 ÿ � 0 0 0

0 0 0 1
2 s44 ÿ � 0 0

0 0 0 0 1
2 s44 ÿ � 0

s16=21=2 ÿs16=21=2 0 0 0 1
2 s66 ÿ �

26666664

37777775 � 0

�28�

and were, thus, evaluated to be given by

�1;5 �
s11 ÿ s12

2

� �
� s66

4

h i
� s11 ÿ s12

2

� �
ÿ s66

4

h i2

�s2
16

� �1=2

;

�29a�

�2;3 �
s11 � s12

2

� �
� s33

2

h i
� s11 � s12

2

� �
ÿ s33

2

h i2

�2s2
13

� �1=2

;

�29b�
�4 � s44=2: �29c�

Hence, there are ®ve distinct eigenvalues, four of which, �1, �2,

�3 and �5, are of multiplicity one, and the other, �4, is of

multiplicity two. The associated ®ve idempotent tensors Em,

m � 1; . . . ; 5, of the spectral decomposition of S were also

found as follows:

E1 � E1
ijkl � h
 h � hijhkl; E2 � E2

ijkl � f 
 f � fijfkl;

�30a�
E3 � E3

ijkl � g
 g � gijgkl; E5 � E5
ijkl � r
 r � rijrkl;

�30b�
E4 � E4

ijkl � 1
2 ��kimj �mikj��kkml �mkkl�
� �kilj � likj��kkll � lkkl��: �30c�

The second-rank axisymmetric tensors h, f, g and r of relations

(30) depend on the components of the compliance tensor S.

They are de®ned by

h � 2ÿ1=2 cos ��ÿb� c� � sin �d; �31a�
f � ÿ2ÿ1=2 sin!�b� c� � cos!a; �31b�
g � 2ÿ1=2 cos!�b� c� � sin!a; �31c�
r � ÿ2ÿ1=2 sin ��ÿb� c� � cos �d; �31d�

with the second-rank symmetric tensor d expressed as

d � 2ÿ1=2�l
m�m
 l�: �32�
Angles ! and �, cited as the eigenangles, are de®ned as

follows:

tan 2! � 2� 21=2s13

��s11 � s12� ÿ s33�
; tan 2� � 2s16

��s11 ÿ s12� ÿ s66=2� :
�33�

It is concluded that the space L of second-rank symmetric

tensors of tetragonal media is decomposed into ®ve subspaces

Lm:

L � L1 � . . .� L5; �34�
and it is deduced that an invariant description of the elasticity

of crystalline or other anisotropic media of the tetragonal

system is offered by means of the ®ve different eigenvalues �m,

m � 1; . . . ; 5, of the compliance tensor S, together with the

values of the two eigenangles ! and �.

In addition, the second-rank stress eigentensors rm,

m � 1; . . . ; 5, of the compliance fourth-rank tensor S

presenting the tetragonal symmetry are derived, by carrying

out the series of computations implicit in relations (20). These

are expressed in contracted notation as

r1 � �2ÿ1=2 cos ���1 ÿ �2� � sin ���6��
� �2ÿ1=2 cos �;ÿ2ÿ1=2 cos �; 0; 0; 0; sin ��T; �35a�

r2 � �ÿ2ÿ1=2 sin!��1 � �2� � cos!��3��
� �ÿ2ÿ1=2 sin!;ÿ2ÿ1=2 sin!; cos!; 0; 0; 0�T; �35b�

r3 � �2ÿ1=2 cos!��1 � �2� � sin!��3��
� �2ÿ1=2 cos!; 2ÿ1=2 cos!; sin!; 0; 0; 0�T; �35c�

r4 � �0; 0; 0; �4; �5; 0�T; �35d�
r5 � �ÿ2ÿ1=2 sin ���1 ÿ �2� � cos ���6��
� �ÿ2ÿ1=2 sin �; 2ÿ1=2 sin �; 0; 0; 0; cos ��T : �35e�

Relations (35) suggest that three of the characteristic stress

tensors, r1, r4 and r5, are shears. Tensors r1 and r5 are

superpositions of pure and simple shear, whereas r4 consti-

tutes a simple shear loading. Moreover, the characteristic

stress r2 and r3 tensors represent equilateral stressings in the

12 plane, together with tension or compression along the 3 axis

of the adopted Cartesian coordinate system. Likewise, the r1

and r5 eigenstates are stresses in the 12 plane, as well as

tension along the 12 axis. Besides, the characteristic stress

tensors r1, r2, r3 and r5 are dependent on the values of the

elastic constants of the tetragonal medium, with the compo-

nents of the r1 and r5 eigenstates being functions of the

eigenangle �, and the r2 and r3 eigentensors being functions

of the eigenangle !. Finally, the orthogonality of the stress
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Figure 2
Geometric representation of the contracted stress eigentensors of the
compliance fourth-rank tensor for orthorhombic crystalline media in the
principal stress system (�1, �2, �3).
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eigentensors rm to each other is easy to verify, as it is to verify

that the sum of the ®ve eigentensors is the stress tensor r.

It is noted that to the characteristic stress tensors rm

correspond strain tensors ""m, decomposing the total elastic

strain-energy density T in discrete components T�rm�,
m � 1; . . . ; 5, in terms of equation (24). Their expressions are

as follows:

T�r1� �
�f��s11 ÿ s12�=2� � s66=4g
� f��s11 ÿ s12�=2� ÿ s66=4g2 � s2

16

ÿ �1=2�
� �2ÿ1=2 cos ���1 ÿ �2� � 21=2 sin ���6��2; �36a�

T�r2� �
�f��s11 � s12�=2� � s33=2g
� f��s11 � s12�=2� ÿ s33=4g2 � 2s2

13

ÿ �1=2�
� �ÿ2ÿ1=2 sin!��1 � �2� � cos!��3��2; �36b�

T�r3� �
�f��s11 � s12�=2� � s33=2g
ÿ f��s11 � s12�=2� ÿ s33=4g2 � 2s2

13

ÿ �1=2�
� �2ÿ1=2 cos!��1 � �2� � sin!��3��2; �36c�

T�r4� � s44��2
4 � �2

5�; �36d�
T�r5� �

�f��s11 ÿ s12�=2� � s66=4g
ÿ f��s11 ÿ s12�=2� ÿ s66=4g2 � s2

16

ÿ �1=2�
� �ÿ2ÿ1=2 sin ���1 ÿ �2� � 21=2 cos ���6��2: �36e�

It is implied by relations (36) that the T�r4� strain energy is

independent of the values of the eigenangles � and ! and is

solely associated with the distortional type of strain energy.

Nevertheless, the remaining stress-energy elements, namely

T�r1�, T�r2�, T�r3� and T�r5�, correspond to mixtures of

distortional and dilatational components of elastic energy.

These depend on the values of the eigenangles � and !, which,

therefore, in¯uence the type of energy formed for each

particular tetragonal medium.

In addition, if we project the stress eigentensors rm,

m � 1; . . . ; 5, on the principal stress space (�1, �2, �3), it can

readily be derived that the projection of eigentensor r4, which

constitutes a simple shear loading, becomes equal to zero. On

the contrary, the projections of the stress eigentensors r2, r3

and the sum of r1 and r5 are generally represented by a tri-

orthogonal frame of vectors. These are associated with the

respective unit vectors e15, e2 and e3, which are de®ned as

follows (Fig. 3):

e15 � �2ÿ1=2;ÿ2ÿ1=2; 0�T; �37a�
e2 � �ÿ2ÿ1=2 sin!;ÿ2ÿ1=2 sin!; cos!�T; �37b�
e3 � �2ÿ1=2 cos!; 2ÿ1=2 cos!; sin!�T : �37c�

According to relations (37), the unit vectors e2 and e3 are

equally inclined to axes �1 and �2, thus lying on the principal

diagonal plane (�3, �12) containing the �3 axis and passing

through the bisector �12 of /�1O�2. In addition, vectors e2 and

e3 subtend angles equal to ! and ��=2ÿ !� with respect to the

�3 axis, whereas vector e1 is perpendicular to the �3 axis and

hence lies on the intersection of the deviatoric � plane and the

plane �3 � 0.

Similarly, a geometric interpretation of the eigenangle �
arises if one considers the projections of the characteristic

stress tensors rm, m � 1; . . . ; 5, given by relations (35), on the

stress system (�1, �2, �6). Then, it is easily deduced that the

projection of the r4 tensor vanishes, whereas the projections

of the stress states r1, r5 and the sum of r2 and r3 are

generally represented by three mutually orthogonal vectors,

oriented along directions with the following associated unit

vectors e1, e23 and e5:

e1 � �2ÿ1=2 cos �;ÿ2ÿ1=2 cos �; sin ��T; �38a�
e23 � �2ÿ1=2; 2ÿ1=2; 0�T; �38b�
e5 � �ÿ2ÿ1=2 sin �; 2ÿ1=2 sin �; cos ��T : �38c�

Fig. 4 presents the geometric arrangement of these three

vectors, e1, e23 and e5. It may be inferred from relations (38)

that the unit vectors e1 and e5 are equally inclined with respect

to the principal stress axes �1 and ÿ�2. As a result, they lie on

the plane containing the �6 axis and passing through the line

�1 � ÿ�2. Furthermore, vectors e1 and e5, mutually orthog-

onal, subtend angles equal to � and ��=2ÿ �� with the �6 axis.

Vector e23 is normal to the same axis and to the plane

�1 � ÿ�2 and hence lies perpendicular to the intersection of

this plane and the plane �6 � 0. This is valid for all tetragonal

media, since the direction cosines of vector e23 are indepen-

dent of the value of the eigenangle � and, therefore, of the

elastic constants of the medium.

3.2. Tetragonal-6 crystals

Up to this point, all the discussion has been restricted to

tetragonal-7 media, which are characterized by seven different

elastic compliances s11, s33, s44, s66, s12, s13, s16, de®ned by

relations (26). However, tetragonal-6 crystals may also be

found in the literature (Landolt-Bornstein, 1979, 1984). These

are identi®ed by six generally different non-zero elastic

compliances, s11, s33, s44, s66, s12, s13, and exhibit either a

Figure 3
Projection of the characteristic stress states of the compliance fourth-rank
tensor valid for tetragonal media in the principal stress frame (�1, �2, �3).



symmetry axis of the fourth order, L4, or an axis of symmetry

of the second order, which is also an axis of complex symmetry

of the fourth order, L2
4. In addition, their crystallographic form

possesses a symmetry axis of the second order, L2, or an axis

normal to a plane of symmetry P. It is assumed that the

coordinate system has its 3 axis coinciding with L4 or L2
4 and

the 1 axis coincides with L2 or is normal to P. Accordingly, the

eigenvalues �m, m � 1; . . . ; 5, of the compliance tensor S for

tetragonal-6 crystals are obtained, either by regarding these

media as special tetragonal-7 crystals and setting s16 � 0 or,

alternatively, by considering them as particular orthorhombic

ones under the conditions s22 � s33, s13 � s23 and s44 � s55.

These are expressed by

�1 � s11 ÿ s12; �4 � s44=2; �5 � s66=2; �39a�

�2;3 �
s11 � s12

2

� �
� s33

2

h i
� s11 � s12

2

� �
ÿ s33

2

h i2

�2s2
13

� �1=2

:

�39b�

Again, there are ®ve distinct eigenvalues �m. The second, third

and fourth eigenvalues, i.e. �2, �3 and �4, are identical to those

of tetragonal-7 symmetry, de®ned by relations (29b), (29c).

The remaining two, �1 and �5, reduce upon substitution of

s16 � 0 to s11 ÿ s12 and s66=2, respectively. Moreover, the

fourth and ®fth eigenvalues of tetragonal-6 symmetry, that is

�4 and �5, are identical to eigenvalues �4 and �6 of the

orthorhombic symmetry, de®ned by equations (11d), whereas

the remaining characteristic values are derived from the

corresponding ones of the orthorhombic symmetry, with the

equations of some compliances, s22 � s33, s13 � s23 and

s44 � s55. Speci®cally, parameters Q and k are expressed,

under these conditions for the tetragonal-6 symmetry, as

Q � 2
27 �s3

11 ÿ s3
33� ÿ 2

3 �s11 ÿ s33���s2
12 ÿ s2

13� � �s11s33�=3�
ÿ 2s12s2

13; �40a�
k � 1

3 ��s11 ÿ s33�2=3� �s2
12 � 2s2

13��: �40b�

In fact, it is proven that Q and k are interrelated in terms of

the ensuing relations:

1
2 Q� 1

2 f��s11 ÿ s33�=2� ÿ s12g3 � 3
2 kf��s11 ÿ s33�=3� ÿ s12g;

�41a�
1
2 Q� 1

2

�f��ÿs11 � 3s12�=6� � s33=6g
� f��s11 � s12�=2� ÿ s33=2g2 � 2s2

13

ÿ �1=2�3

� 3
2 k
�f��ÿs11 � 3s12�=6� � s33=6g

� f��s11 � s12�=2� ÿ s33=2g2 � 2s2
13

ÿ �1=2�
; �41b�

so that the ratio ÿQ=2k3=2 is given by

ÿQ=2k3=2

� cos 3 cosÿ1 f��s11 ÿ s33�=3� ÿ s12g=2k1=2
ÿ �ÿ 2�n

� �
� cos 3 cosÿ1 f��ÿs11 � 3s12�=6� � s33=6g��ÿ
� f��s11 � s12�=2� ÿ s33=2g2 � 2s2

13

ÿ ���
2k1=2

	ÿ 2�n
�
;

�42�

where index n acquires the values 0, 1 and 2. In view of

relation (42), it readily follows that the characteristic values

�1, �2 and �3 of the orthorhombic symmetry, expressed by

equations (11), degenerate for tetragonal-6 media into the

forms given in relations (39). Yet each eigenvalue of the

orthorhombic system does not correspond distinctly to every

eigenvalue of the tetragonal-6 system.

Additionally, since the elastic constant s16 vanishes, the

eigenangle � of tetragonal-6 media vanishes, whereas the

eigenangle ! is de®ned by relation (33), as in the case of

tetragonal-7 crystals. Further, the eigenangles � and ' of

orthotropy are equal to �=2 and �=4 for tetragonal-6 media,

while the eigenangle ! reduces, upon substitution of the

conditions for tetragonal-6 symmetry and the values of the

respective eigenvalues of relations (39), to the de®nition of !
given in equation (33).

Besides, there are ®ve distinct elementary idempotent

tensors Em, m � 1; . . . ; 5, with the second, third and fourth,

i.e. E2, E3 and E4, being identical to those of tetragonal-7

media. On the contrary, the idempotent tensors E1 and E5 are

acquired by setting the value of the eigenangle � equal to zero.

Therefore, the associated ®ve idempotent tensors Em are

expressed by relations (30), with tensors f and g de®ned in

terms of relations (31), and tensors h and r expressed as

h � 2ÿ1=2�ÿb� c�; r � 21=2d: �43�

Otherwise, the idempotent fourth-rank tensors Em of tetrag-

onal-6 media may be acquired from the corresponding ones of

the orthorhombic medium, by substituting in expressions (12)

the values of the eigenangles � and ' for tetragonal-6

symmetry, which are equal to �=2 and �=4, respectively.

Finally, the corresponding stress eigentensors rm,

m � 1; . . . ; 5, are given by
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Figure 4
Projection of the characteristic stress states of the compliance fourth-rank
tensor valid for tetragonal media in the stress frame (�1, �2, �6).
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r1 � �12 ��1 ÿ �2�; 1
2 ��2 ÿ �1�; 0; 0; 0; 0�T; �44a�

r2 � �ÿ2ÿ1=2 sin!��1 � �2� � cos!��3��
� �ÿ2ÿ1=2 sin!;ÿ2ÿ1=2 sin!; cos!; 0; 0; 0�T; �44b�

r3 � �2ÿ1=2 cos!��1 � �2� � sin!��3��
� �2ÿ1=2 cos!; 2ÿ1=2 cos!; sin!; 0; 0; 0�T; �44c�

r4 � �0; 0; 0; �4; �5; 0�T; �44d�
r5 � �0; 0; 0; 0; 0; �6�T : �44e�

Relations (44a), (44d) and (44e) indicate that the stress

eigenstates r1, r4 and r5, related to the spectral decomposition

of the compliance tensor S for tetragonal-6 media, are shear

loadings, with the r1 eigentensor representing pure shear and

states r4 and r5 constituting simple shear loadings. Therefore,

these stress states correspond to strain states, producing shape

alterations of the medium, and the strain energy, formed by

these tensors, is associated solely with shape distortions of the

tetragonal-6 medium.

4. Hexagonal symmetry

Hexagonal crystals are distinguished by ®ve different non-zero

elastic compliances s11, s33, s44, s12, s13. Below, they are

regarded as special tetragonal-6 crystals and the components

Sijkl of their compliance fourth-rank tensor S are de®ned by

relations (26), with respect to the matrix components sij of the

Voigt notation, setting s16 � 0 and 2s66 � �s11 ÿ s12�. Next, it is

assumed that the Cartesian frame of reference is oriented,

with its 3 axis being an axis of symmetry of either the third-

order L3 or the sixth-order L6 and, if a symmetry axis of the

second-order L2 exists, this is taken to be the 1 axis. The

eigenvalues �m, m � 1; . . . ; 4, of the compliance tensor S for

hexagonal crystals were obtained, by reduction of the de®ning

relations (39) for the eigenvalues �m of the tetragonal-6

medium. These are given by the following relations:

�1 � s11 ÿ s12; �4 � s44=2; �45a�

�2;3 �
s11 � s12

2

� �
� s33

2

h i
� s11 � s12

2

� �
ÿ s33

2

h i2

� 2s2
13

� �1=2

:

�45b�

All four eigenvalues �m of the hexagonal symmetry are

identical to those of the tetragonal-6 symmetry. In addition,

eigenvalue �5 of tetragonal-6 media, de®ned by relation (39a),

degenerates to s11 ÿ s12. Then, there are four distinct char-

acteristic values �m of tensor S; two of them, �1 and �4, are of

multiplicity two, and the other two, �2 and �3, are of multi-

plicity one.

The value of the eigenangle ! is given for the hexagonal

symmetry by relation (33), as in the case of the tetragonal-6

and -7 symmetries. In addition, the corresponding four

idempotent tensors Em, m � 1; . . . ; 4, were determined from

equations (30):

E1 � E1
ijkl � 1

2 �b0ikb0jl � b0ilb
0
jk ÿ b0ijb

0
kl�; �46a�

E2 � E2
ijkl � f 
 f � fijfkl; �46b�

E3 � E3
ijkl � g
 g � gijgkl; �46c�

E4 � E4
ijkl � 1

2 �b0ikajl � b0ilajk � b0jlaik � b0jkail�: �46d�
The second-rank symmetric tensor b0, ®guring in relations (46)

for the idempotent tensors E1 and E4, is de®ned by b0 � b� c

and the second-rank symmetric tensors b and c are expressed

in terms of relations (15). It is noted that the second, E2, third,

E3, and fourth, E4, idempotent tensors of relations (46b), (46c)

and (46d) are identical to those of tetragonal-6 symmetry,

expressed by relations (30). On the contrary, the ®rst, E1, and

®fth, E5, idempotent tensors of tetragonal-6 media merge and

degenerate to expression (46a) for the hexagonal symmetry.

Therefore, it is understood that the eigenvalues �m,

m � 1; . . . ; 4, given by relations (45), and the eigenangle !
constitute the ®ve invariant elastic constants, which are

responsible for the description of the elastic features of

hexagonal anisotropic media. Furthermore, for the char-

acteristic values �m and the corresponding idempotent fourth-

rank tensors Em, it is valid that

S � �1E1 � . . .� �4E4 �47�
and, hence, the second-rank tensor space L is expanded

orthogonally as

L � L1 � . . .� L4; �48�
where L1 and L4 are two-dimensional subspaces of deviators

and L2, L3 are one-dimensional subspaces.

Furthermore, the stress eigentensors rm, m � 1; . . . ; 4, of

the compliance tensor S were derived via relations (44). These

are given in contracted notation by

r1 � �12 ��1 ÿ �2�; 1
2 ��2 ÿ �1�; 0; 0; 0; �6�T; �49a�

r2 � �ÿ2ÿ1=2 sin!��1 � �2� � cos!��3��
� �ÿ2ÿ1=2 sin!;ÿ2ÿ1=2 sin!; cos!; 0; 0; 0�T; �49b�

r3 � �2ÿ1=2 cos!��1 � �2� � sin!��3��
� �2ÿ1=2 cos!; 2ÿ1=2 cos!; sin!; 0; 0; 0�T; �49c�

r4 � �0; 0; 0; �4; �5; 0�T : �49d�
It is easily veri®ed from relations (49) that the sum of the four

stress eigentensors rm, associated with the spectral decom-

position of the compliance tensor S for hexagonal media, is the

generic stress tensor r. The orthogonality of each of the stress

eigenstates rm to each of the other eigentensors in the set is

also readily veri®ed. Furthermore, it is noted that the r1 and

r4 eigentensors do not rely on the elastic properties, thus

remaining constant for the whole class of hexagonal media.

On the other hand, the characteristic stress tensors r2 and r3

are determined by the value of the eigenangle !, given by

relation (33), and depend on the engineering elastic constants

of the hexagonal body. In addition, the characteristic stress

states r1 and r4 are shears, with r1 being a superposition of

pure and simple shear and r4 being simple shear. The sum of

eigentensors r2 and r3 is the orthogonal complement to the

sum of the shear stress states r1 and r4. Finally, the r2 and r3



eigenstates represent equilateral tension or compression in the

12 isotropic plane, together with superposed tension along the

3 axis of symmetry of the medium.

Four strain eigentensors ""m, m � 1; . . . ; 4, correspond to

these stress eigentensors rm, m � 1; . . . ; 4. Two of them, ""1

and ""4, are associated with pure distortion of the medium

without any volume change. Hence, the elastic strain energy

density Td,

Td � T�r1� � T�r4�
� �s11 ÿ s12����1 ÿ �2�2=2� 2�2

6 � � s44��2
4 � �2

5�; �50�
owing to the contribution of the characteristic stress states r1

and r4, corresponds to a purely distortional strain energy. The

remaining r2 and r3 stress tensors are associated solely with

neither a distortional nor a dilatational form of strain energy;

their respective tensors ""2 and ""3 cause both volume changes

and shape distortions. Therefore, the elastic strain-energy

density Tm, given by

Tm � T�r2� � T�r3�
� �f��s11 � s12�=2� � s33=2g � ÿf��s11 � s12�=2� ÿ s33=2g2

� 2s2
13

�1=2��ÿ�sin!=21=2���1 � �2� � cos!�3�2
� �f��s11 � s12�=2� � s33=2g ÿ ÿf��s11 � s12�=2� ÿ s33=2g2

� 2s2
13

�1=2���cos!=21=2���1 � �2� � sin!�3�2; �51�
and formed by stress eigentensors r2 and r3, corresponds to

mixtures of distortional and dilatational components of elastic

energy. Moreover, as seen by relation (50), the Td strain-

energy part is unrelated to the value of the eigenangle !,

whereas the strain-energy component Tm depends on the

value of !, which, thus, in¯uences the type of strain energy

stored in the body.

Interestingly, a direct geometric visualization for the stress

eigentensors rm, m � 1; . . . ; 4, is obtained if we consider the

projections of their contracted forms on the principal stress

space (�1, �2, �3). Accordingly, the characteristic stress state

r4 vanishes at once, whereas the stress eigentensors r1, r2 and

r3 are generally represented by three mutually orthogonal

vectors, shown in Fig. 5, associated with the respective unit

vectors e1, e2 and e3, which are de®ned by

e1 � �2ÿ1=2;ÿ2ÿ1=2; 0�T; �52a�
e2 � �ÿ2ÿ1=2 sin!;ÿ2ÿ1=2 sin!; cos!�T; �52b�
e3 � �2ÿ1=2 cos!; 2ÿ1=2 cos!; sin!�T : �52c�

Then, it is noted in Fig. 5 that the unit vectors e2 and e3 are

located on the principal diagonal plane (�3, �12), since they are

equally inclined with respect to the principal stress axes �1 and

�2. Furthermore, vectors e2 and e3 subtend angles equal to !
and ��=2ÿ !�, respectively, with the positive �3 axis. Finally,

the e1 unit vector is perpendicular to the diagonal plane

�1 � �2 and the �3 axis and, hence, lies on the deviatoric �
plane. For any hexagonal medium, the direction of vector e1,

and thus of eigentensor r1, remains constant, whereas vectors

e2 and e3 rotate with respect to the origin of the coordinate

frame, lying always on the plane �1 � �2.

5. Cubic symmetry

5.1. Cubic crystals

Cubic crystals are characterized by three different non-zero

elastic compliances s11, s44, s12. On that account, they may be

regarded as special tetragonal-6 crystals, with s16 � 0 and

s11 � s33, s12 � s13 and s44 � s66. Considering in the following

the spectral decomposition of the compliance tensor S for the

class of cubic media, the Cartesian frame of reference is

directed, with its 1 and 2 axes being axes of symmetry of the

®rst order L. However, if this is not the case, the 1 axis coin-

cides with the symmetry axis of the second-order L2, while the

2 axis coincides with a symmetry axis of the second order,

which is also an axis of complex symmetry of the fourth order,

L2
4. As a result, the eigenvalues �m, m � 1; 2; 3, of tensor S

were obtained by reduction of relations (39), expressing the

eigenvalues �m of the tetragonal-6 system, as follows:

�1 � s11 ÿ s12; �2 � s44=2; �3 � s11 � 2s12: �53�

One characteristic value of cubic symmetry, namely �2, is

identical to eigenvalue �4 of tetragonal-6 symmetry. In addi-

tion, eigenvalues �1 and �2 of tetragonal-6 media reduce to

s11 ÿ s12, whereas eigenvalues �3 and �5 reduce to s11 � 2s12

and s44=2, respectively. Obviously, there are three distinct

eigenvalues �m of tensor S. One eigenvalue, �2, is of multi-

plicity three, eigenvalue �1 is of multiplicity two, and the last

eigenvalue, �3, is of multiplicity one.

The eigenangle ! was also found for cubic symmetry,

according to its de®ning relation (33), to be equal to 35.26�.
Furthermore, the corresponding idempotent tensors E1 and E2

were derived from the de®ning equations (30) by substituting

the value of the eigenangle ! and by adding, respectively, the

®rst, E1, and second, E2, as well as the fourth, E4, and ®fth, E5,

idempotent tensors of tetragonal-6 media, while tensor E3 was

obtained by reduction of the respective eigentensor of

tetragonal-6 media:

Acta Cryst. (2000). A56, 319±331 Theocaris and Sokolis � Invariant elastic constants 327

research papers

Figure 5
Geometric representation of the contracted stress eigentensors of the
compliance fourth-rank tensor for hexagonal media in the principal stress
space (�1, �2, �3).
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E1 � E1
ijkl

� 1
3 ��kikj ÿ lilj��kkkl ÿ lkll� � �lilj ÿmimj��lkll ÿmkml�
� �kikj ÿmimj��kkkl ÿmkml��; �54a�

E2 � E2
ijkl

� 1
2 ��kilj � likj��kkll � lkkl� � �kimj �mikj��kkml �mkkl�
� �limj �milj��lkml �mkll��; �54b�

E3 � E3
ijkl � 1

3 �1
 1� � 1
3 �ij�kl: �54c�

Moreover, it appears by the form of expressions (54) that the

idempotent tensors Em, obtained for the cubic symmetry via

the spectral decomposition of the compliance tensor S, are

exactly those derived by Walpole (1981, 1984), employing,

however, altogether different types of decomposition of

fourth-rank tensors.

In conclusion, the three distinct eigenvalues �m, m � 1; 2; 3,

of the compliance fourth-rank tensor S constitute coordinate-

invariant parameters, which characterize the elastic properties

of cubic media. Moreover, the compliance tensor S is

decomposed spectrally in terms of the characteristic values �m,

de®ned according to relations (53), and the idempotent

tensors Em of (54), and it is valid that

S � �1E1 � �2E2 � �3E3; �55�

implying that the L space is decomposed into three subspaces

Lm, m � 1; 2; 3:

L � L1 � L2 � L3; �56�

where L1 is the subspace of deviators, corresponding to pure

shear, dim�L1� � 2, L2 is the subspace of deviators, corre-

sponding to simple shear, dim�L2� � 3 and L3 is the subspace

of spherical tensors, dim�L3� � 1.

Finally, the contracted characteristic stress tensors rm,

m � 1; 2; 3, of the compliance tensor S were obtained from

equations (44) by setting the value of the eigenangle ! equal

to 35.26�. They are expressed as

r1 � �13 �2�1 ÿ �2 ÿ �3�; 1
3 �ÿ�1 � 2�2 ÿ �3�;

1
3 �ÿ�1 ÿ �2 � 2�3�; 0; 0; 0�T; �57a�

r2 � �0; 0; 0; �4; �5; �6�T; �57b�
r3 � �3ÿ1=2�1 � 3ÿ1=2�2 � 3ÿ1=2�3��3ÿ1=2; 3ÿ1=2; 3ÿ1=2; 0; 0; 0�T :

�57c�

In consideration of relations (57), it is easily con®rmed that

these stress eigentensors rm form an othogonal set and their

sum equals the stress tensor r. Each of the three stress

eigentensors rm is associated with a unique type of loading.

Eigenstate r1 is a pure shear stress state, stress eigentensor r2

refers to a simple shear stress state and, ®nally, the r3 eigen-

tensor constitutes a hydrostatic loading.

Furthermore, three characteristic strain states ""m are asso-

ciated with stress eigentensors rm. Two of those are related

with distortional alterations of the medium. Thus, the strain-

energy density Td, given by

Td � T�r1� � T�r2�
� �s11 ÿ s12��12 ��1 ÿ �2�2 � 1

6 �ÿ�1 ÿ �2 � 2�3�2�
� s44��2

4 � �2
5 � �2

6�; �58�
and produced by r1 and r2, is a purely distortional strain

energy. Conversely, the r3 stress state corresponds solely to a

dilatational elastic energy Tv, given by

Tv � T�r3� � 1
3 �s11 � 2s12���1 � �2 � �3�2: �59�

In fact, relations (58) and (59) constitute the well known

expressions for the distortional and dilatational energy

components and the decomposition of the elastic potential T

for the cubic medium resembles closely that of the isotropic

body.

In addition, inasmuch as the projections of the contracted

characteristic stress states rm, m � 1; 2; 3, given by relations

(57), are concerned on the principal stress space (�1, �2, �3), it

is easily derived that the projection of the characteristic stress

tensor r2, which is expressed as simple shear loading, becomes

equal to zero. However, the projected stress eigenstates r1 and

r3 are represented by a tri-orthogonal frame of vectors,

corresponding to the unit vectors e1, e2 and e3 with the

following de®nitions:

e1 � �2ÿ1=2;ÿ2ÿ1=2; 0�T; �60a�
e2 � �ÿ6ÿ1=2;ÿ6ÿ1=2; 2�6ÿ1=2��T; �60b�
e3 � �3ÿ1=2; 3ÿ1=2; 3ÿ1=2�T : �60c�

Then, it is easily noted in Fig. 6 and ascertained by relations

(60) that the unit vector e3 lies in the positive direction of the

hydrostatic axis (�1 � �2 � �3), whereas the unit vectors e1

and e2 lie on the deviatoric � plane, and both vectors e2 and e3

remain on the principal diagonal plane (�3, �12).

5.2. Isotropic crystals

In the well known case of isotropic elastic media, there are

only two distinct matrix components sij in the Voigt notation,

Figure 6
Representation of the characteristic stress states of the compliance
fourth-rank tensor for both cubic and isotropic crystals in the principal
stress space (�1, �2, �3).



since it is also valid that s44 � 2�s11 ÿ s12�. Consequently, it was

found, by reduction of the expressions obtained for cubic

symmetry, that one eigenvalue, �1, of the isotropic compliance

tensor S is of multiplicity ®ve, and one eigenvalue, �2, is of

multiplicity one:

�1 � s44=2; �2 � s11 � 2s12 �61�
and the values of the eigenangles are exactly those of cubic

symmetry. The corresponding idempotent fourth-rank tensors

Em, m � 1; 2, are expressed by

E1 � E1
ijkl � Iÿ 1

3 �1
 1� �62a�
E2 � E2

ijkl � 1
3 �1
 1� � 1

3 �ij�kl; �62b�
where I is the unit element of the fourth-rank tensor space.

In conclusion, the two distinct eigenvalues �m, m � 1; 2, of

the isotropic material compliance tensor S constitute coordi-

nate-invariant parameters, characterizing the elastic proper-

ties of isotropic bodies. Moreover, the compliance tensor S is

decomposed spectrally according to the following repre-

sentation:

S � �1E1 � �2E2: �63�
Then, the L space is decomposed into two subspaces Lm,

m � 1; 2:

L � L1 � L2; �64�
where L1 is the ®ve-dimensional subspace of deviators and L2

is the one-dimensional subspace of spherical tensors. Finally,

the stress eigentensors for isotropy decompose an arbitrary

loading r as a sum of a deviatoric, r1, and a spherical, r2,

tensor:

r � r1 � r2; r2 � 1
3 �tr r�1; �65�

in which trr is the ®rst invariant of the stress r tensor and the

unit tensor 1 in Cartesian form is represented by the

Kronecker delta. As a result, the total elastic strain-energy

density T for the isotropic body is decomposed into distor-

tional, Td, and dilatational, Tv, components, as follows:

T � Td � Tv

� T�r1� � T�r2�
� �s44=2��12 ��1 ÿ �2�2 � 1

6 �ÿ�1 ÿ �2 � 2�3�2
� 2��2

4 � �2
5 � �2

6�� � 1
3 �s11 � 2s12���1 � �2 � �3�2: �66�

6. Thermodynamically admissible compliance-tensor
components

Within the context of the classical linear anisotropic elasticity,

accordance with thermodynamics requires the strain-energy

function T to be positive de®nite, expressed as a quadratic

form, in either the stress, r, or the strain, "", tensor, by

2T � r � S � r � Sijkl�ij�kl > 0 �67a�
2T � "" � C � "" � Cijkl"ij"kl > 0; �67b�

for any non-zero symmetric second-rank tensor r or "". In the

case of the spectral decomposition of either the compliance, S,

or stiffness, C, fourth-rank tensors, the problem reduces to the

trivial conditions of non-negativeness of the eigenvalues �m of

the corresponding tensors, according to the conditions

�m > 0; m � 1; . . . ; k: �68�
Therefore, the positiveness of the eigenvalues �m of the

compliance tensor S exhibiting any symmetry allows the

determination of necessary and suf®cient conditions for the

positive de®niteness of T in terms of the compliance-tensor

components Sijkl, as expressed in the Voigt notation. The

resulting conditions are equivalent to the expressions involv-

ing the positivity of the leading principal minors of the square

matrix associated with tensor S, usually employed in the

literature (Ting, 1996).

By imposing the eigenvalues �m of the compliance tensor S

of orthorhombic media, expressed by relations (11), to be

positive de®nite, it is readily deduced that

A< 0; k> 0; Q2 < 4k3: �69�
Two inequalities follow directly from condition k> 0, that is

A< ÿ �3B�1=2 and A> �3B�1=2, yet the second one is excluded

in view of the condition A< 0. Only the ®rst case,

A< ÿ �3B�1=2, is admissible; still, it is required that B> 0.

Further, it is valid that

4k3 ÿQ2 � A2=27�B2 ÿ 4AC� ÿ 2B=3�2B2=9ÿ AC� ÿ C2

and, hence, in order for the condition Q2 < 4k3 to be satis®ed,

it is requested that

0< 2B2=9<AC<B2=4; �70�
which is evidently ful®lled only when C< 0.

Therefore, the positivity of eigenvalues �1, �2, �3 is

equivalent to A< 0, B> 0 and C< 0. In fact, these inequalities

would have easily been obtained, alternatively, noting that the

coef®cients A, B and C of the cubic polynomial (3) in � are

equal to

A � ÿ��1 � �2 � �3�; B � �1�2 � �2�3 � �1�3;

C � ÿ�1�2�3: �71�
Consequently, for �1, �2, �3 to be positive, it is imperative that

the ensuing inequalities be satis®ed simultaneously:

s11 � s22 � s33 > 0;

s11s22 � s22s33 � s11s33 ÿ �s2
12 � s2

13 � s2
23�> 0; �72a�

s11�s22s33 ÿ s2
23� ÿ s12�s12s33 ÿ s13s23� � s13�s12s23 ÿ s13s22�> 0:

�72b�
Concerning the ®rst inequality of the set (72a), it is noted that

the elastic compliances s11, s22 and s33 are all positive or

any two of them are positive and one is negative or, ®nally,

two of them are negative and the remaining one is positive.

Considering the third case, s11 > 0 and fs22; s33g< 0 gives

s11 > ÿ �s22 � s33�> 0. Then, it is valid that s11 > ÿ s22 and

ÿ�s22 � s33�> ÿ s33 and, hence, we have that
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ÿs11�s22 � s33�> s22s33 > 0: �73�
However, noting that s2

12 � s2
13 � s2

23 > 0, it follows from the

second inequality of (72a) that s22s33 > ÿ s11�s22 � s33�> 0,

suggesting that the case of one compliance being positive and

two negative is not compatible with the initial two inequalities

of the set (72a). It is, similarly, shown that the case of two

positive compliances and a negative one cannot satisfy rela-

tions (72a), and on that account it is concluded that the latter

conditions are met fully only when fs11; s22; s33g> 0.

Finally, as far as the second relation in (72a) is concerned,

this leaves us with three choices. The differences s11s22 ÿ s2
12,

s22s33 ÿ s2
23 and s11s33 ÿ s2

13 are all positive or two of them are

positive and one is negative or two of them are negative and

one is positive. It is next shown that only the ®rst case of those

will satisfy equation (72b). Since fs11s2
23; s22s2

13; s33s2
12g> 0, the

latter inequality gives

s11s22s33 > s12s13s23: �74�
Then, considering the second case, it follows that

�s11s2
22s33�1=2 > s12s23, since �s11s22�1=2 > s12 > ÿ �s11s22�1=2 and

�s22s33�1=2 > s23 > ÿ �s22s33�1=2. Yet, s11s33 < s2
13, so that relation

(74) is not clearly satis®ed. This contradiction is only removed

if the ®rst case is considered, namely that s11s22 > s2
12,

s22s33 > s2
23 and s11s33 > s2

13.

In conclusion, all the diagonal compliance elements, in the

Cartesian coordinate frame with respect to which the

compliance-tensor components were de®ned by relations (1),

must be positive. Moreover, it is seen that the values of the off-

diagonal elements are bounded by certain inequalities. In

summary, the following set of constraints must be satis®ed by

the compliance-tensor components:

fs11; s22; s33; s44; s55; s66g> 0; �75a�
s2

12 < s11s22; s2
13 < s11s33; s2

23 < s22s33; �75b�
s11�s22s33 ÿ s2

23� ÿ s12�s12s33 ÿ s13s23� � s13�s12s23 ÿ s13s22�> 0:

�75c�
Besides, it was proven for the class of tetragonal-7 media

that constraint (68) requests the subsequent set of conditions:

fs11; s33; s44; s66g> 0; �76a�
s2

12 < s2
11; s2

13 < s11s33; s2
16 < s11s66; �76b�

�s11 ÿ s12�s66 > 2s2
16; �s11 � s12�s33 > 2s2

13: �76c�
In addition, the restrictive bounds, which should be satis®ed

by the thermodynamically admissible compliance-tensor

components of tetragonal-6 symmetry, are obtained by

reduction of equations (76), noting that in this particular

situation s16 � 0. Thus, the following inequalities are found:

fs11; s33; s44; s66g> 0; �77a�
s2

12 < s2
11; s2

13 < s11s33; �s11 � s12�s33 > 2s2
13: �77b�

Therefore, relations (76) and (77) may be used for the quali-

®cation of the experimentally measured elastic compliances of

tetragonal crystals.

For the special case of transverse isotropy or hexagonal

symmetry, in which the elastic properties in the 12 plane are

identical for all directions about the normal, the constraints of

equation (77) are reduced to

fs11; s33; s44g> 0; �78a�
s2

12 < s2
11; s2

13 < s11s33; �s11 � s12�s33 > 2s2
13: �78b�

Similar bounds were ®rst obtained by Eubanks & Sternberg

(1954) and later by Nye (1957) and Lempriere (1968),

pursuing different but mathematically equivalent methods.

Christensen (1979) also attempted to derive such bounds on

the basis of physical arguments, however, the bounds he

derived were less stringent, overestimating the interval of

values of s13, which was assumed to be

s2
13 < s11s33: �79�

Then, comparison of the constraint obtained by Christensen

with the one expressed by the right-hand side of relation (78)

shows that inequality (79) is exact only in the limiting case,

s12 � s11. Finally, Theocaris & Philippidis (1991) also derived

inequalities (78) by utilizing the same analysis as the one

presented in this paper, via the spectral decomposition of

tensor S for transversely isotropic media.

Furthermore, the restrictions applying to the elastic

compliances for cubic media are obtained by reduction of the

general conditions (77), which are valid for tetragonal-6

media, and are expressed by

fs11; s44g> 0; s11 > s12; s11 � 2s12 > 0: �80�
These constraints for cubic media were ®rst stated by Nye

(1957). At last, for the isotropic case of equal elastic properties

in all directions within the medium, conditions (80) simplify

further to the well known constraints:

s11 > 0; ÿ1< ÿ s12=s11 <
1
2 : �81�

7. Conclusions

In this paper, the cases of orthorhombic, tetragonal, hexagonal

and cubic media have been treated in detail, and all the

invariant parameters of the spectral decomposition of the

compliance tensor were explicitly calculated in terms of its

Cartesian components. Furthermore, the strain-energy density

of the corresponding media was given a de®nite decomposi-

tion in distinct components, associated with the elastic stress

and strain eigenstates. In fact, the decomposition of the strain-

energy density for the orthorhombic and the tetragonal-7

media, as well as their subclasses, the tetragonal-6, hexagonal

and cubic media, which is based on the spectral decomposition

of the compliance and stiffness tensors of such media,

constitutes the simplest one for anisotropic media. It was

shown by reduction that it corresponds to the well known

classical decomposition of the elastic strain-energy density of

isotropic solids into dilatational and distortional forms of

energy.

The elastic characteristics of anisotropic crystals are offered

by invariant parameters, emerging from the spectral decom-

position of its compliance tensor. Then, the characteristic



values of the compliance tensor constitute these parameters,

together with the eigenangles. In fact, the eigenangles were

shown to determine the alignment of the eigentensors, asso-

ciated with the eigenvalues of the compliance tensor, when

represented in a stress coordinate system.
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